Cross-domain, soft-partition clustering with diversity measure and knowledge reference
نویسندگان
چکیده
منابع مشابه
Clustering with a Domain-Specific Distance Measure
With a point matching distance measure which is invariant under translation, rotation and permutation, we learn 2-D point-set objects, by clustering noisy point-set images. Unlike traditional clustering methods which use distance measures that operate on feature vectors a representation common to most problem domains this object-based clustering technique employs a distance measure specific to ...
متن کاملRevising Domain Knowledge with Cross-Domain Analogy
AI systems and human novices share a difficult problem: repairing incorrect models to improve expertise. For people, the use of analogies during instruction can augment the repair of science knowledge. Enabling AI systems to do the same involves several challenges: representing knowledge in commonsense science domains, constructing analogies to transfer knowledge, and flexibly revising domain k...
متن کاملCross-Document Co-Reference Resolution using Sample-Based Clustering with Knowledge Enrichment
Identifying and linking named entities across information sources is the basis of knowledge acquisition and at the heart of Web search, recommendations, and analytics. An important problem in this context is cross-document coreference resolution (CCR): computing equivalence classes of textual mentions denoting the same entity, within and across documents. Prior methods employ ranking, clusterin...
متن کاملFuzzy Partition based Similarity Measure for Spectral Clustering
The efficiency of spectral clustering depends heavily on the similarity measure adopted. A widely used similarity measure is the Gaussian kernel function where Euclidean distance is used. Unfortunately, the result of spectral clustering is very sensitive to the scaling parameter and the Euclidean distance is usually not suitable to the complex distribution data. In this paper, a spectral cluste...
متن کاملRepairing Qualitative Domain Knowledge with Cross-Domain Analogy
AI systems and human novices share a difficult problem: repairing incorrect models to improve expertise. For people, the use of analogies during instruction can augment the repair of science knowledge. Enabling AI systems to do the same involves several challenges: representing knowledge in commonsense science domains; constructing analogies to transfer knowledge; and flexibly revising domain k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2016
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2015.08.009